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Abstract
This is a tutorial paper on the properties of partially coherent hard x-ray beams
and their use in the structural analysis of condensed matter. The role of
synchrotron radiation in the generation of coherent x-ray beams is highlighted
and the requirements on the source properties are discussed. The technique of
phase contrast imaging is briefly explained, as well as diffraction in the Fresnel
and Fraunhofer regimes. The origin of speckle is elucidated and it is shown how
oversampling of the diffraction pattern by at least a factor of two enables retrieval
of the phases of the waves scattered from different parts of the object. This in
turn allows for a direct reconstruction of the object’s structure. One-dimensional
objects, such as a fluid confined between two surfaces, cannot be unambiguously
reconstructed by phase retrieval without additional assumptions. A trial-and-
error method based on the analysis of waveguiding modes within the confined
geometry is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Coherence of light is generally associated with laser-like properties. Although lasers exhibiting
multi-mode oscillations are far from ideal coherent sources, it is true that the wavefronts they
produce are highly correlated in space and time. This cannot be said about ‘classical’ sources
such as a lamp or a star, which spontaneously emit photons in a chaotic manner, both spatially
and temporally. Nonetheless, coherent light can be extracted from a lamp with the help of
filtering in the spatial and the temporal domains. Spatial filtering is performed by positioning
slits or pinholes along the beam path, whereas temporal filtering is achieved by extracting a
small wavelength bandwidth using a monochromator. The price to pay, of course, is a huge
loss of intensity. But if the source is sufficiently brilliant to start with, one can afford to pay
this price. Third-generation synchrotron radiation facilities are such brilliant sources. They
provide radiation ranging from the infrared to the hard x-ray regime. It is the x-ray part of the
spectrum that is of interest here.
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The scattering of a fully coherent x-ray beam from an object gives rise to interference
effects in the scattered beam. In the near-forward scattering direction, the phase differences
between the waves traversing different parts of the object enable imaging of the object in
phase contrast. At larger scattering angles, the interferences (the speckle pattern) provide
us with information on its shape and internal structure on a length scale much shorter than is
accessible with visible light. The retrieval of the object’s real-space structure from the observed
interference pattern is known as coherent diffractive imaging or lensless imaging, which can
be regarded as holography without a reference beam.

In this tutorial paper we first introduce the physical parameters characterizing the
coherence properties of electromagnetic radiation (sections 2 and 3), then we describe some
applications of coherent x-ray scattering: phase contrast imaging (section 4), speckle analysis
(section 5) and coherent diffractive imaging (section 7), and finally the structural analysis of
confined fluids in a waveguiding geometry (section 8). A brief outlook is presented in section 9.
The treatment of these subjects is kept elementary and is by no means exhaustive. For details,
we refer the reader to recent papers by experts in the fields. A fundamental introduction to x-
ray coherence is found in [1]. The propagation of partially coherent electromagnetic radiation
is extensively treated in the classical textbooks by Born and Wolf [2] and by Goodman [3].
An excellent textbook on synchrotron x-ray physics has recently been written by Als-Nielsen
and McMorrow [4]. The scattering of partially coherent x-rays by matter is treated in [5].

Time-dependent fluctuations in the speckle pattern yield insight into the structural
dynamics of the object. Measuring the correlations in the arrival rate of the photons in the
detector as a function of photon momentum transfer is known as x-ray photon correlation
spectroscopy (XPCS). It is an extension of PCS, or dynamic light scattering, in the visible [6, 7].
One may investigate the diffusion properties of complex fluids, capillary waves on surfaces,
phase transitions in materials etc. This technique requires extremely brilliant beams, and hence
its application is not without difficulties. XPCS will not be further discussed here. Instead we
refer the reader to [8–14].

Most coherent scattering techniques that at present are implemented in the x-ray range
have already been known for a long time in the visible. Apart from a 50-year time lapse, there
is an amazing parallel in their development; virtually every x-ray method has its counterpart
in the visible. Why then should optics be ‘redone’ with x-rays? There are several reasons, the
most important being that x-rays are much less absorbed by matter than visible light is, so most
objects are ‘seen’ by x-rays as phase objects. The relative transparency to x-rays essentially
allows us to obtain an inside look into objects and to make 3D reconstructions of their internal
structure. A second reason is that scattering techniques probe much smaller length scales in
the x-ray range than in the visible. A third reason is that x-rays interact with matter weakly,
with the result that multiple-scattering effects, which in the visible often dominate, are greatly
suppressed. This helps us to extract from diffraction patterns the structure of the object.

2. Transverse coherence

Let us first consider the coherence properties of a source in a plane transverse to the propagation
direction of the radiation. A good measure for the degree of coherence is the interference
contrast recorded in the far-field diffraction pattern of an object in the beam. Let us take as an
object Young’s double-slit arrangement [2]. Illuminating the double slit with a monochromatic
point source results in the far field in a set of interference fringes with fully developed maxima
and zero intensity in the minima, corresponding to a fringe visibility of 100%.

In practice, however, the source is not point-like, but has some lateral extension. It is
easy to see that this reduces the visibility of the interference fringes. Although the fringe
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Figure 1. Diffraction patterns from two narrow slits at distance d, originating from the central part
of the source (solid curve) and from the edge of the source at height w/2 (dashed curve). The slit
distance d is such that the two patterns are in antiphase. This occurs for d = λR/w. Angles and
distances are not to scale.

patterns resulting from different points of the extended source are identical, they emerge at
slightly shifted diffraction angles. Their superposition therefore causes the observed pattern to
be somewhat washed out, i.e., the fringe visibility to be reduced. The effect of the extension of
the source can be readily quantified. Let us consider two narrow slits at distance d , illuminated
by a uniform line source of height w; see figure 1.

The interference fringes produced by an infinitesimally small emitting source element
located on the optical axis appear at diffraction angles α = mλ/d , with m = 0,±1,±2, . . .
for the maxima and m = ± 1

2 ,± 3
2 ,± 5

2 . . . for the minima. Here, the small-angle approximation
has been made. The fringes produced by an emitting element at the border of the source are
found at the shifted angles mλ/d + w/2R, with R the distance between the source and the
slits. It is easy to see that the maxima from a border element of the source coincide with the
minima from the central element at a slit separation d = λR/w. This distance is defined as
the transverse coherence length

ξt = λR

w
. (1)

Considering now a uniform rectangular source with horizontal and vertical widthswh andwv,
which illuminates two pairs of pinholes at right angles at distances dh and dv, we arrive at the
corresponding transverse coherence lengths ξh = λR/wh and ξv = λR/wv.

We stress that different elementary areas of our classic extended source independently
radiate wavefronts whose amplitude and phase rapidly fluctuate in time. The influence of the
source extension on any interference pattern can therefore be found by (incoherent) summation
of the intensities contributed by each of the area elements over the entire source area, each
contribution weighted with the intensity into the element. Synchrotron radiation sources have
a Gaussian intensity distribution. The corresponding transverse coherence lengths are given by
ξh = λR/(2πσh) and ξv = λR/(2πσv) [15, 16]. The limit R → ∞ or σ → 0 represents the
case of a fully coherent source, characterized by an infinitely large coherence length. Third-
generation synchrotron radiation sources typically have a source size of σv � 10–50 µm and
σh � 100–500 µm. At a wavelength λ = 0.1 nm and at a typical distance of 40 m from the
source, the transverse coherence lengths are in the ranges ξv � 25–100µm and ξh � 3–10µm.

How large is the photon flux through a single coherence area, i.e., through an area spanned
by ξh and ξv? For simplicity we assume again that the source is uniform and rectangular with
area whwv. It has a brilliance B , which is defined as the number of photons per unit time,
generated per unit source area, per unit solid angle and per 0.1% fractional bandwidth (BW)



5006 F van der Veen and F Pfeiffer

�λ/λ. The photon flux F transmitted by the coherence area at distance R equals

F = Bwhwv��
�λ

λ
, (2)

with the solid angle�� subtended by the coherence area given by��= ξhξv/R2. Substituting
the latter expression as well as the expression for the transverse coherent length, (1), in (2), we
obtain

F = Bλ2�λ

λ
. (3)

It is easy to show that (3) has the same form if the source has a Gaussian intensity distribution.
The flux through a single coherence area can now be estimated. An undulator at a third-

generation source typically has a brilliance B ∼ 1020 photons s−1 mm−2 mrad−2 (0.1% BW)−1.
The fractional bandwidth�λ/λ is determined by the properties of the monochromator of the
beamline at which the scattering experiment is performed. If one uses, e.g., the (111) reflec-
tion of a Si crystal monochromator,�λ/λ = 1.3 × 10−4. At a wavelength λ = 0.1 nm, the
flux through a single coherence area then equals F = 1.3 × 1011 photons s−1. For higher
fluxes one should choose a monochromator with a wider band pass such as a multilayer mirror
(�λ/λ � 1 × 10−2) or just use one of the harmonics of the undulator in combination with
a cut-off filter for the higher harmonics. However, there is an upper limit to the band pass,
which is set by the required longitudinal coherence length; see section 3.

For the scattering to be fully coherent in the transverse directions, the object width a
should be smaller than the transverse coherence length ξt . Writing (1) as ξt = λ/�θ , with
�θ = w/R, the divergence of the beam as seen at distance R from the source, we can rewrite
a < ξt as

�θ <
λ

a
. (4)

For a given object width, (4) sets a maximum to the allowed angular divergence.
The object may have dimensions larger than the coherence length. In that case one pre-

selects a coherent beam by placing just in front of the object a small pinhole, of size ∼ξhξv.
Loosely speaking, the selected beam then has a degree of coherence close to 100%. For beam
areas A > ξhξv the degree of coherence is correspondingly smaller.

We note that the transverse coherence length is a property of the source and the beamline
optics. Young’s double slit only figures as a test object [17, 18], and one may just as well
take a single slit [19], a waveguide [20] or a fibre [21]. But, of course, a proper theory
for the description of the partial coherence of e.m. radiation does not depend on the specific
diffraction properties of an object in the beam. A rigorous treatment of the propagation of
partially coherent light is found in [2].

3. Longitudinal coherence

The degree of coherence of the radiation along its propagation direction, i.e., its longitudinal
(or temporal) coherence, enters the scattering process in a different way. Let us consider two
wavefronts, one at wavelength λ and the other at a slightly different wavelength λ+�λ, which
simultaneously depart from a single point. Let us assume that after some distance ξl the two
wavefronts are in antiphase; see figure 2.

If the first wave has made N oscillations over that distance, the second wave must have
made N − 1

2 oscillations. One therefore has Nλ = (N − 1
2 )(λ + �λ). Solving for N and

substituting in ξl = Nλ we find for this distance

ξl � 1

2

λ2

�λ
. (5)
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Figure 2. Propagation of two waves with wavelengths λ and λ +�λ. The longitudinal coherence
length ξl is defined as the distance over which the phase difference of the two waves has become
π .

(a) (b)

(c)

Figure 3. Scattering geometries showing the path length differences PLD associated with (a) the
sample width a and (b) the sample thickness 	. Panel (c) shows the corresponding incoming and
scattered wavevectors ki and ko and the momentum transfer q. Angles and distances are not to
scale.

The pre-factor is dependent on the spectral power density of the source; for a Lorentzian
spectrum one has ξl � (2/π)λ2/�λ [3].

The longitudinal coherence length is inversely proportional to the bandwidth. For
�λ/λ = 1.3 × 10−4 and 0.1 nm wavelength, we find ξl � 400 nm, i.e., much smaller than the
transverse coherence length. In order to see the implications of a small longitudinal coherence
length, consider the scattering event through an angle 2θ , from a sample having a width a
and a thickness 	; see figure 3(a). The path length difference (PLD) between waves scattered
from the centre of the sample and from the outer edge equals a(sin 2θ)/2. A condition for
coherence is that ξl > PLD or

λ2

�λ
> a sin 2θ. (6)

The right-hand side of this equation can be rewritten in terms of the momentum transfer
q = ko − ki, where ko and ki are the wavevectors of the scattered and incoming beams.
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Using |ko| = |ki| = k, q = 2k sin θ (figure 3(c)) and sin 2θ = 2 sin θ cos θ , we find

λ2

�λ
>

aq

k

√
1 − q2/4k2. (7)

We have q < k, and in practice we can neglect higher-order terms in q/k:

λ2

�λ
>

aq

k
. (8)

Equation (8) must be satisfied for the largest momentum transfer q covered in the experiment,
and we need sufficient momentum transfer in order to achieve a good (i.e., small) resolution.
The maximum momentum transfer qmax relates to the spatial resolution s through qmax = 2π/s,
and with use of k = 2π/λ we can rewrite (8) as

�λ

λ
<

s

a
. (9)

In order to resolve an object of size a = 5 µm to within s = 10 nm, one has to keep the
fractional bandwidth�λ/λ below 2×10−3. One then has to employ a crystal monochromator;
a multilayer monochromator would not be good enough.

So far we have only considered the effect of the sample width on the PLD. However,
the sample thickness also contributes to the PLD; see figure 3(b). The PLD between waves
scattered from the front and the back of the sample equals 	(1 − cos 2θ) = 2	(sin θ)2. The
condition for coherence, ξl > PLD, then reads

λ2

�λ
> 4	(sin θ)2. (10)

Of the two inequalities (6) and (10), the one whose right-hand side (rhs) is greater applies.
The rhs of (10) is of order (q/k)2, and the strictest requirement will almost always be (6).

For a given wavelength λ, sample width a and resolution s, the conditions for coherent
scattering can be summarized as follows: equation (4) sets an upper limit on the divergence of
the beam and (9) sets a limit on the fractional bandwidth.

4. Phase contrast

In this section we discuss the use of partially coherent x-ray beams for phase contrast imaging
of objects in the limit of near-forward scattering. For the size of the structural features to be
imaged, we assume that the conditions on the beamline optics, given in (4) and (9), are met.

When a coherent wavefield propagates through an object, phase differences arise between
different parts of the wavefront. These are due to spatial variations in the refractive index of
the object, which for x-ray wavelengths is given by

n = 1 − δ + iβ. (11)

Here, β = µλ/4π incorporates the absorption of the x-rays, with µ the absorption coefficient.
This term affects the amplitude of the waves. The term

δ = λ2rene/2π, (12)

with re = 2.818×10−15 m the classical radius of the electron and ne the electron density of the
material, determines the phase of the waves and causes their refraction. For sufficiently small
wavelengths (λ < 0.1 nm), β may be as small as 10−9, whereas δ is of the order of 10−6 [22].
Phase contrast therefore dominates absorption contrast in the x-ray regime. An advantage of
being sensitive to phase contrast is that even small spatial variations in the refractive index
can be detected. Phase contrast x-ray imaging therefore has great potential for application
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Figure 4. Propagation of a plane wave through a planar object with transmission function q(X,Y ).
Angles and distances are not to scale.

in medicine and in biology [23], enabling one to differentiate between different kinds of soft
tissue.

The structural detail in a phase contrast image depends on the distance R between the
object and the detector. Three regimes for imaging can be distinguished. In the contact or
near-contact regime, the detector is placed directly behind the object. In this case the observed
contrast in the image can only be due to absorption. As one moves further away from the object,
interferences build up, and one enters first the Fresnel diffraction regime, then the Fraunhofer
regime [24]. In order to define these diffraction regimes, we consider a plane wave incident
on a planar object with transmission function q(X,Y ) (see figure 4). The diffracted amplitude
in the (x, y) detector plane at distance R is found by considering each infinitesimal surface
element dX dY in the object plane to be a secondary source of spherical wavelets and by
summing over the total area [2]:

ψ(x, y) = i

λ

∫ ∫
q(X,Y )

exp(ikr)

r
dX dY (13)

where r = [R2 + (x − X)2 + (y − Y )2]1/2 = (r2
0 − 2x X − 2yY + X2 + Y 2)1/2 is the length of

the vector connecting the point (x, y) with (X,Y ). Since {R, r0} � {x, X, y,Y }, we expand
r in the exponent of (13) up to second order around r0 and obtain

ψ(x, y) � i exp(ikr0)

λr0

∫ ∫
q(X,Y ) exp

(
−ik

x X + yY

r0

)
exp

(
ik

X2 + Y 2

2r0

)
dX dY. (14)

In the case of negligible absorption, the transmission function can be represented by a phase
factor

q(X,Y ) = exp[iφ(X,Y )], (15)

with φ(X,Y ) equal to (2π/λ)× (the optical path length difference) over the sample thickness
	(X,Y ), projected onto the (X,Y )-plane:

φ(X,Y ) = 2π

λ

∫ 	(X,Y )

0
δ(X,Y ) dZ . (16)

Absorption can be accounted for by replacing δ(X,Y ) by δ(X,Y ) + iβ(X,Y ) in the integrand
of (16). If φ(X,Y ) is real and small, the object is said to be a weak phase object, and one can
approximate the exponent in (15) by

exp[iφ(X,Y )] � 1 + iφ(X,Y ). (17)

The exponent in the second exponential term of (14) accounts for the spherical curvature
of the wavefronts. The curvature becomes negligible for r0 � R > a2/λ, with a the sample
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(a) distance: 0 mm (b) distance: 100 mm

Figure 5. A mouse femur head imaged at 15 keV at different sample–detector distances. From [26].

size (a ∼ max[X,Y ]). The second exponential term then becomes unity, and the diffracted
amplitude is simply the Fourier transform of q(X,Y ); the amplitude distributionψ(X,Y ) does
not change shape with increasing distance. This defines the Fraunhofer diffraction regime.
Fresnel diffraction occurs between near-contact and the onset of the Fraunhofer diffraction
regime, i.e. for R < a2/λ [25]. The amplitude distribution ψ(x, y) may then change rapidly
with distance R, because of strong interferences.

In the Fresnel diffraction regime, phase contrast can be exploited to greatest advantage.
Let us consider a feature within the object plane of size ζ , at a position where the phase factor
φ(X,Y ) varies strongly. This feature will appear in strong phase contrast for R < ζ 2/λ,
which is the Fresnel regime for a feature of size ζ . R can now be chosen sufficiently small that
only the abrupt edges of the object appear in phase contrast, while the more slowly varying
structural features are still predominantly visible in absorption contrast. This choice of R leads
to edge-enhanced contrast. An example is given in figure 5, which shows the image of the
femur head of a mouse with the detector in near-contact (absorption contrast) and at 100 mm
distance (edge-enhanced contrast) [26]. The images were taken at a wavelength of 0.08 nm.
The distance is therefore such that density variations over ζ � 3 µm appear in enhanced
contrast. Loosely speaking, figure 5(b) shows the derivative of 5(a) on that length scale.

Three-dimensional objects can be reconstructed by repeating the above imaging method
for different orientations of the sample. From the corresponding family of line integrals of
the form of (16), one can numerically solve for β(X,Y, Z) and δ(X,Y, Z). This technique,
which is capable of resolving structures down to a micrometre or even less, is called computer
tomography [27].

Edge-enhanced contrast imposes only modest requirements on the source coherence.
Longitudinal coherence is not an issue, because the scattering in tomography is nearly in
the forward direction. The transverse coherence length only has to exceed the distance over
which the density of the object changes appreciably. For an edge which extends over, say,
ζ � 3 µm, it is sufficient that the coherence length be a few micrometres. Hence, the object
plane in general contains many (103–106) coherence areas.
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(a)

(b)

Figure 6. X-ray diffraction from a disordered medium with particle distance d. The object size
is a. (a) Incoherent scattering, giving rise to a continuous diffraction ring; (b) coherent scattering,
resulting in a speckled diffraction ring.

5. Speckle

Let us now assume that the object plane contains a single coherence area, i.e., that the scattering
is fully coherent in the transverse directions. If the scattering medium is inhomogeneous, the
diffraction pattern becomes speckled. This is analogous to the speckle that one sees when a laser
beam is projected onto a white wall. Speckle patterns are a nuisance or a blessing, depending
on the application. Clearly, in tomography one can do very well without speckle; partial
coherence is only exploited in some cases to achieve edge-enhanced contrast. In addition, it
is well known in optics that the imaging of an object under fully coherent illumination yields
a lower spatial resolution than imaging under incoherent illumination [2]. Why then the great
interest in coherent x-ray diffraction? This stems from the fact that one is able, in principle, to
reconstruct the object’s structure from the diffraction pattern in a unique way. In conventional
diffraction, using an incoherent beam, this is impossible; the phases of the waves scattered from
different parts of the object cannot be retrieved from the diffracted intensity pattern |ψ(x, y)|2.
By contrast, coherent diffraction enables us to retrieve the phases in most cases.

X-ray speckle patterns arise in the following way [28–34]. Figure 6 compares Fraunhofer
diffraction patterns taken from a disordered medium, e.g., a fluid of colloidal particles, under
incoherent and coherent illumination. There are three important length scales in our problem:
the wavelengthλ, the average distance d between particles and the size a of the illuminated area
(the particle size is left out of consideration, because it only influences the diffracted intensity
distribution, not the position of the main diffraction maxima). Scale invariance implies that the
pattern depends on λ/d and λ/a. But incoherent illumination cannot result in a dependence on
λ/a; changing this parameter makes no difference, apart from changing the area over which the
different incoherent wavefronts are averaged. The incoherent pattern therefore only depends
on λ/d . Indeed, the maximum intensity is found at an angle ∼λ/d (corresponding to the first
maximum in the Patterson function [35]). The coherent diffraction pattern exhibits the same
dependence, but must in addition have features of much smaller size ∼λ/a (λ/a � λ/d , since
a � d). These are the speckles.
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The speckles, each having an angular width λ/a, arise from the interferences between the
wavefronts scattered from the different particles. If the position of a single particle is changed,
all interferences are affected, and the complete speckle pattern changes. The pattern therefore
contains information on the positions of all particles, and one would like to invert the pattern
in order to obtain these positions. However, it is not obvious that such an inversion can be
made in a unique way. We will show in section 6 that a unique inversion is possible, provided
that the features of the speckle pattern are sampled with a sufficiently high frequency.

Whereas the diffraction pattern taken under incoherent illumination is the average over
patterns resulting from slightly different wavefronts and therefore resembles an average over an
ensemble of slightly different particle configurations, the coherent pattern reflects a particular
realization of the system. In the latter case there is no averaging over particle distances, and
in fact the average distance d is irrelevant. In angle space (Fourier space) the average distance
only becomes noticeable as a maximum in the envelope function of the speckles. We stress
here that the speckle size λ/a is the same for all speckles and contains no information on the
internal structure of the object. It is the way in which the speckles are distributed over angle
and intensity that matters.

From a single speckle pattern as in figure 6(b), one can expect to obtain the object’s density
distribution projected onto the plane perpendicular to the beam direction. If the object is three-
dimensional, one may in principle reconstruct its internal structure by taking a single speckle
pattern up to very large momentum transfers (including near-backscattering). However, for
a non-crystalline object this is impossible because the scattered yields are negligible at large
momentum transfers. In practice one limits oneself to a rather small range of momentum
transfer in the forward direction (with correspondingly lower spatial resolution) and takes a
sequence of speckle patterns for different orientations of the object in the beam. This method
resembles tomography, but the reconstruction algorithm is different.

6. Phase retrieval

In recent years several authors have explained why under coherent illumination, a unique
determination of the density distribution within a finite-size object is possible [36–66]. Here
we reproduce their arguments in a simplified form. In section 4 it was shown that the diffracted
amplitude from an object in the far field is the Fourier transform of the object’s transmission
function q(X,Y ). For the sake of clarity we write (14) in a different form. For convenience
we assume the object to be a one-dimensional weak phase object and obtain for the amplitude
in the detector plane

ψ(x) � i exp(ikr0)

λr0

∫
[1 + iφ(X)] exp

(−2π iXx

λr0

)
dX, (18)

where (17) has been used, and the second exponential factor in (14) has been set equal to unity
(scattered waves are approximated by plane waves). Integration over the first term in (18)
yields a delta function δ(x/λr0). This represents the direct transmitted beam, which is not
considered further because it is usually blocked by a beam stop [60]. We simplify (18) further
by introducing u ≡ −x/(λr0), where u represents a distance in reciprocal space. It is readily
verified that u = −q/2π . Replacing φ(X) in (18) by ρ(X) (see (16) and (12)) and putting all
constants into a single pre-factor, which is then set equal to one, we obtain

F(u) =
∫
ρ(x) exp(2π iux) dx . (19)

Here, for ease of notation, we have replaced the amplitude ψ(x) by the function F(u) and the
running variable X by x . Equation (19) simply states that the diffracted amplitude F(u) is the
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Fourier transform of the density ρ(x). If we denote the Fourier transformation by the operator
F , (19) can be written in the shorthand notation F(u) = F[ρ(x)]. The density ρ(x) can be
obtained from the diffracted amplitude through the inverse Fourier transform

ρ(x) =
∫

F(u) exp(−2π iux) du, (20)

which can be written as ρ(x) = F−1[F(u)]. If we were able to measure F(u) directly,
the density ρ(x) would follow uniquely from (20). However, the detector can only measure
the diffracted intensity |F(u)|2, not the generally complex amplitude F(u). Hence, phase
information is lost in the measurement. In conventional crystallography, this is known as the
phase problem [4]. Consider, for example, an infinitely long one-dimensionalarray of identical
objects of size a and at spacing a. The corresponding density distribution can be represented
by

ρ(x) = ρo(x)⊗
n=∞∑

n=−∞
δ(x − na), (21)

where ρo(x) is the density distribution within a single object, and the symbol ⊗ is the
convolution operator defined by

f (x)⊗ g(x) ≡
∫ ∞

−∞
f (X)g(x − X) dX. (22)

Using the well-known convolution theorem of Fourier theory,

F[ f (x)⊗ g(x)] = F[ f (x)]F[g(x)], (23)

we find for the Fourier transform of ρ(x) in (21):

F(u) = Fo(u)
1

a

m=∞∑
m=−∞

δ(u − m/a). (24)

Here, Fo(u) = F[ρo(x)]. We conclude that diffraction from an infinite array of objects with
period a results in an intensity distribution |F(u)|2 given by an array of delta functions with
period 1/a in reciprocal space (see figure 7(a)). The envelope of the intensity distribution,
which determines the weight of the delta functions, is given by |Fo(u)|2. The delta functions
are the Bragg peaks, and their spacing 1/a is the Bragg sampling interval. There is no intensity
in between. Hence, for the determination of the object’s structure, one only has a discrete set
of values |Fo(m/a)| at one’s disposal. Since the phases of Fo(m/a) have been lost, one cannot
inversely transform as in (20); for this to be possible, we would need to know twice as many
parameters (phases and amplitudes at each Bragg point) as we have measured (amplitudes
only).

Now consider, instead of an infinite array of objects, a single object of size a, as shown
in figure 7(b). Its speckled diffraction pattern is given by the continuous function |Fo(u)|2.
The interval 1/a now arises from scattering from the top and the bottom of the single object.
Sampling the diffraction pattern at half this interval, i.e. at a spacing 1/(2a), now enables us to
solve the phase problem. This can be understood as follows. In general, the Shannon sampling
theorem [67] states that a function g(x) which is non-zero within an interval w can be fully
reconstructed by sampling its Fourier transform F[g(x)] at a spacing 1/w. In our case, the
detector measures F[g(x)] = |Fo(u)|2, and back-transforming results in

g(x) = F−1|Fo(u)|2 = F−1[Fo(u)F
∗
o (u)] = F−1[Fo(u)] ⊗ F−1[Fo(u)

∗]

= ρ(x)⊗ ρ(−x), (25)
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(a)

(b)

Figure 7. Coherent x-ray diffraction from an object of size a. (a) The diffraction pattern from an
infinite array of objects at spacing w = a, giving rise to an array of sharp Bragg peaks; (b) the
diffraction pattern from a single object, resulting in a continuous, speckled distribution of intensity.
Sampling at the Bragg spacing 1/a and at the Shannon spacing 1/(2a) is indicated as well.

where use has been made of (20) and of the multiplication theorem of Fourier theory:

F[ f (x)g(x)] = F[ f (x)] ⊗ F[g(x)]. (26)

The convolution ρ(x) ⊗ ρ(−x), which is known as the autocorrelation function of the
density, is non-zero over an interval w equal to twice the object size a. In order to satisfy
Shannon’s theorem, one should reconstruct it by sampling its Fourier transform at a spacing
1/w = 1/(2a). The latter spacing represents an oversampling of the object’s reciprocal space
by a factor of two. In the object’s real space, the sampling range corresponds to a distance of
twice the object size. One knows that the object has zero density outside its boundary, and it
is this knowledge that one uses to solve the phase problem.

The above statements can be cast into mathematical equations. Let the detector sample
the diffraction pattern over N pixels, each having a width �u. The corresponding real-space
sampling interval equals �x = 1/(N�u), and the position xn of the nth sampling interval
within the object is given by xn = n�x = n/(N�u). If the pattern is sampled at the Bragg
spacing �u = 1/a, we have �x = a/N , and the xn cover the entire range a in which the
density ρ(x) is non-zero. Discretizing the Fourier transform (19), we find for the amplitude
at position um = m�u in reciprocal space:

|F(um)| =
∣∣∣∣∣

N−1∑
n=0

ρ(xn) exp(2π ium xn)�x

∣∣∣∣∣ =
∣∣∣∣∣

N−1∑
n=0

ρ(n�x) exp(2π imn/N)�x

∣∣∣∣∣ . (27)

It is readily verified that F(um) is a periodic function with period uN , so

F(uN−m) = F(−um). (28)

|F(u)| therefore takes maximally N different values: |F(u0)|, |F(u1)|, . . . , |F(uN−1)|. If
ρ(x) is real (no absorption), F∗(u) = F(−u) and hence |F(um)| = |F(−um)|. Using (28)
one finds |F(uN−m)| = |F(um)|. In that case, only N/2 independent values of |F(um)|
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are measured, while there are N unknown values of ρ(xn). If ρ(x) is complex, we have
N independent values of |F(um)| and 2N unknowns ρ(xn) to be determined (the real and
imaginary parts separately). In both cases, the set of equations (27) cannot be solved. Let
us now oversample reciprocal space by a factor of two, i.e. we sample the diffraction pattern
over 2N pixels, each having a width �u = 1/(2a). The corresponding real-space interval
�x = 1/(2N�u) = a/N and the total range of xn remain unchanged. Equation (27) changes
into

|F(um)| =
∣∣∣∣∣

N−1∑
n=0

ρ(n�x) exp

(
2π imn

2N

)
�x

∣∣∣∣∣ , (29)

with m = 0, 1, 2, . . . , 2N − 1. Now there are as many unknowns as there are equations (N
for ρ(x) real and 2N for ρ(x) complex), and the equations can be solved. The concept of
oversampling can be brought out more clearly by rewriting (29) as

|F(um)| =
∣∣∣∣∣
2N−1∑
n=0

ρ(n�x) exp

(
2π imn

2N

)
�x

∣∣∣∣∣ , (30)

with

ρ(xn) = 0 for N � n � 2N − 1 (31)

and m = 0, 1, 2, . . . , 2N − 1. The advantage of this notation is that there are as many
sampling intervals in real space as there are in reciprocal space, allowing discrete Fourier
transform algorithms to be readily applied.

For one dimension, the equations (29) generally have more than one solution [68], but
for higher dimensions (2D or 3D) they usually have a unique solution. The above equations
can readily be generalized to higher dimensions by introducing the vectors r and u for the
real-space and reciprocal-space coordinates and by rewriting (19) as

F(u) =
∫
ρ(r) · exp(2π iu · r) d3r. (32)

In discretized form, the three-dimensional analogue of (29) is

|F(um)| =
∣∣∣∣∣

N 3−1∑
n=0

ρ(rn) · exp(2π ium · rn)�
3r

∣∣∣∣∣

=
∣∣∣∣∣∣

N−1∑
nx =0

N−1∑
ny=0

N−1∑
nz=0

ρ(nx�x, ny�y, nz�z)

× exp

[
2π i(mx nx + m yny + mznz)

23/2 N

]
�x�y�z

∣∣∣∣ . (33)

Here we assume along each axis an oversampling interval �ux = 1/(23/2ax), �uy =
1/(23/2ay) and �uz = 1/(23/2az), where ax , ay and az are the object’s dimensions along
the x-, y- and z-axes. The corresponding real-space intervals are �x = ax/N , �y = ay/N
and �z = az/N . Note that the oversampling by a factor of two refers to three-dimensional
space, not to each dimension separately [44]. In this example, we took for each of the three
directions the same oversampling ratio of 23/2, but, with some restrictions, these ratios may
also be chosen different. One can bring (33) into the same form as (30), on the condition that
the density is padded with zeros outside the object region. An oversampling ratio larger than
two, which implies a larger no-density region, renders the set of equations (33) overdetermined,
which results in a more accurate reconstruction. In order to achieve low-noise reconstructions,
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Figure 8. A schematic representation of the Gerchberg–Saxton algorithm [37]. One iterates
between real space and reciprocal space using the fast Fourier transform (FFT) and its inverse and
imposes known constraints in both spaces (see the text).

oversampling ratios substantially larger than two (e.g., 4 or 5) should be chosen. Equation (33)
can be readily modified so as to apply to reconstruction of a 2D object.

We note again that one usually reconstructs a 3D phase object by rotating it in the beam
through 180◦ and recording an oversampled 2D diffraction pattern at each rotation angle [60].
The 2D patterns are then assembled to a 3D diffraction pattern. Here the meaning of N3 is
not the physical number of detector pixels as stated before, but instead the number of pixels
generated by the detector and by the number of rotation steps.

The density is reconstructed from the 3D diffraction pattern using the equations given
in (33). Usually these equations are not directly solved, but an iterative procedure known as
the Gerchberg–Saxton algorithm is applied [37]. At the heart of the algorithm is the fact that
oversampling in reciprocal space implies sampling the object’s density in parts of real space
where it is known to be zero. One therefore has to have a priori knowledge of the object’s size,
for which one may take half the width of the 3D density autocorrelation function ρ(r)⊗ρ(−r).
One defines a support region, in which the density is allowed to be non-zero, and an outside
region, in which the density is padded with zeros. The oversampling ratio is simply given
by the ratio of the total sampling area in real space to the support area. The algorithm then
proceeds as shown schematically in figure 8. One begins by assigning a set of random phases to
the support (assuming zero absorption). Fast Fourier transformation (FFT) yields a diffraction
pattern that differs from the measured one. After replacing the calculated values |F(um)| by
the measured ones, one performs an inverse transformation (FFT−1) and obtains a complex
density distribution in real space which generally is non-zero outside the support. One puts
the density to zero outside the support and requires it to be real and positive inside, and one
Fourier transforms again. This cycle is repeated until convergence is achieved, i.e., until the
constraints in real and reciprocal space are both fulfilled within a certain error margin.

Scattering phases may also be retrieved by completely different methods, which operate
in the Fresnel diffraction regime. Cloetens et al [69] take a sequence of Fresnel diffraction
patterns at various distances from the object. This makes each pattern sensitive to a different
spatial frequency (see section 4). Analysing the sequence using a method derived from high-
resolution electron microscopy [71], one obtains a 2D map of the gradient of the phase and thus
of the density gradient. 3D maps are then constructed by repeating the mapping for different
rotation angles of the sample. The method does not assume knowledge of the object boundary,
but does require a large data set. Nugent et al [70] developed a quantitative phase imaging
method, which is based on a single Fresnel pattern at fixed distance and on use of the so-called
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transport of intensity equation [72]. Since not all spatial frequencies are probed, one may
miss specific structural details. For a discussion of these interesting developments we refer
the reader to the relevant literature.

7. Diffractive imaging

The method explained in section 6 can be used for the imaging of objects, crystalline or non-
crystalline [73, 56, 53, 64]. The imaging does not require a lens, and reconstruction of the
object is entirely based on retrieval of the scattering phases.

A beautiful example of object reconstruction is found in figure 9 taken from [61]. A 2D
diffraction pattern (λ = 2 Å) from a micro-sized gold structure on a silicon nitride membrane
was phased using the Gerchberg–Saxton algorithm. The reconstruction reproduced the electron
microscopy image, and a spatial resolution of 7 nm was achieved. An oversampling ratio of 5
reduced noise and prevented trapping of the numerical algorithm in a local minimum.

The oversampling technique can also be used for the imaging of nanocrystals [64, 74].
Figure 10 shows a continuous diffraction pattern from a single nanocube around one of the
Bragg peaks associated with diffraction from its internal lattice planes. A 3D pattern is collected
by rocking the crystal around the Bragg angle under consideration, so that a series of 2D
projections perpendicular to the Bragg-scattered wavevector kf is obtained. Figure 10(a)
illustrates this using a Ewald construction where, instead of the crystal, the Ewald sphere is
rotated around the origin of reciprocal space. Reconstruction of the crystal from the continuous
pattern around the (hkl) reflection yields the electron density distribution within the crystal
giving rise to that reflection. In this way, dislocation bands or other structural defects within
the nanocrystal can be made directly visible. Figure 10(d) shows a reconstruction based on the
Gerchberg–Saxton algorithm in a 2D projection,obtained from the pattern in figure 10(c). Note
that for a complete series of 2D projections only a small angular range is required, since most
of the momentum is transferred via the fixed reciprocal-lattice vector Ghkl . By contrast, the
forward scattering geometry, which was previously discussed, requires rotation of the sample
over 180◦ for a complete recording of the 3D pattern. But of course, the Bragg scattering
geometry differs from the forward scattering geometry in that one filters out the component
of the density distribution that contains the spatial frequency 1/Ghkl . As a result, it is only
of use for the imaging of small crystalline objects. When it can be used, it has the additional
advantages that a stop for the direct beam is not required and that one does not have to deal
with diffraction features from the pinhole in front of the sample.

The period of fringes seen in the diffraction pattern of figure 10(c) corresponds to a spatial
frequency of 1/a, with a the distance between two opposing faces of a single nanocube. One
may interpret these fringes as speckles, but they differ from those shown, e.g., in figure 6(b) or
figure 9(b). Whereas regular fringes arise from the well-defined edges of a single nanocube, the
speckle distributions of figure 6(b) and of figure 9(b) arise from interferences between waves
scattered from different (irregular) internal parts of the object, be it a collection of particles or
a collection of objects, as shown in figure 9(a). But in all cases, by its very nature, the speckle
width is the reciprocal of the beam width. In the Bragg geometry of figure 10, the beam width
equals the object width; in the forward scattering geometry or in specular reflection geometry,
it is given by the size of the pinhole.

The necessity of oversampling the diffraction patterns results in a stricter requirement
on the beam divergence than that formulated in (4). Sampling at the Shannon spacing
�u = 1/(2a) corresponds to an angular pixel size of �α = λ/(2a), which the detector must
resolve. Of course, the angular divergence�θ of the incident beam must be smaller than�α.
This then implies that (4) must be replaced by�θ < λ/(2a). Usually, the oversampling ratio
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(a)

(b)

(c)

Figure 9. (a) A scanning electron microscopy picture of a 2D gold object. (b) An x-ray diffraction
pattern of the object. (c) Reconstruction of the object from its diffraction pattern. From [61].
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(a)
(b)

(d)(c)

Figure 10. (a) The reciprocal-space geometry for diffraction from the lattice planes of a nanocube.
(b) A scanning electron microscopy picture of a collection of Ag nanocubes of size 160 nm. (c) An
x-ray diffraction pattern of a nanocube. (d) Reconstruction of the nanocube from its diffraction
pattern. From [74].

is chosen to be much larger than two. If we denote the oversampling ratio along a particular
direction transverse to the beam direction by O, the criterion for the beam divergence along
that direction reads

�θ <
λ

Oa
. (34)

We conclude that the transverse coherence length must exceed the object size by as much as
the oversampling factor: ξt > aO. Similarly, the criterion on the bandwidth of the source,
given in (9), has to be modified:

�λ

λ
<

s

Oa
. (35)

The longitudinal coherence length, given by (5), should be correspondingly larger as well:
ξl > λaO/(2s), with s the desired spatial resolution.

Despite the oversampling, the requirements on the beam coherence can in most cases be
readily met. That is, the more interesting applications of diffractive imaging are to be found in
nanoscience. The smaller the object size a, the smaller the coherence length is allowed to be.
For example, for the imaging of the 160 nm nanocubes in figure 10 with an oversampling factor
of 10, the minimum transverse coherence length required is only 1.6 µm. By comparison,
the transverse vertical coherence length for an unfocused beam from an undulator of a third-
generation source is typically in the range 25–100 µm. Hence, one can accept a substantial
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Figure 11. Waveguiding analysis of the structure of a confined colloid. The Fraunhofer diffraction
pattern in the (x, z)-plane exhibits speckles in directions characteristic of the fluid’s density profile
across the gap. The figure is not drawn to scale: the gap size a is typically a few hundred nanometres,
the length of confining geometry along the propagation direction of the beam is a few millimetres
and the angles of incidence and exit, θi and θe, are less than the critical angle for total internal
reflection (<0.1◦). From [78].

decrease in ξv before the loss of coherence becomes noticeable. This opens the possibility of
focusing the beam onto the nano-object. If the optics demagnifies the source by a factor M , ξv

decreases by the same factor. Beam compression by a factor of 15–60 in the vertical direction
is therefore possible without compromising the measurement [75]. In the horizontal direction,
along which the coherence length is typically a factor of ten smaller, the demagnification factor
should be chosen correspondingly smaller. For small a, the requirement on the longitudinal
coherence length, i.e. on the monochromator bandwidth, is relaxed as well, resulting in an
additional flux gain. In all, a total flux gain of a few orders of magnitude is possible. This
example shows the importance of matching the transverse and longitudinal coherence lengths
to the dimensions of the object and to the oversampling factor.

8. A special case: fluid confined in one dimension

The conditions for object reconstruction, as discussed in section 6, are not always fulfilled. Let
us consider, for example, the object depicted in figure 11. A colloidal fluid is confined by two
parallel plates, providing a model for a lubricated contact between two surfaces [76]. X-ray
scattering from the confined fluid is employed in order to address the question of whether
the colloidal particles order in layers parallel to the confining surfaces [77, 78], as has indeed
been predicted [79, 80]. The gap between the surfaces is in the range of a few hundred
nanometres. Hence, the object size a along the confining direction x is less than a typical
vertical coherence length, and scattering within the (x, z)-plane is a coherent process. By
contrast, scattering within the infinitely extended plane of confinement, the (y, z)-plane, is
incoherent. One may question whether it is possible to uniquely reconstruct from the far-field
diffraction pattern in the (x, z)-plane the density profile of the fluid along the x-direction. The
answer appears to be no. The one-dimensional nature of the problem implies that different
field profiles across the exit of the gap may yield the same diffraction pattern, irrespective of
the degree of oversampling [68]. Since the emerging field profile is a fingerprint of the fluid’s
density profile, it therefore appears that the latter cannot be obtained by direct inversion of the
diffraction pattern, when no additional assumptions about the system are made.

The fluid’s density profile, as expressed by the spatially varying refractive index n(x, z),
is in this case determined by trial and error [77]. The experiment was conducted as follows:
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(a) (b)

Figure 12. (a) A plane wave incident under a glancing angle θi is reflected from a surface. The
spacing between two consecutive nodes of the standing wavefield equals λ/(2θi), in the small-angle
approximation. (b) The upper surface of the waveguide is positioned at a node of the standing
wavefield. The wavefield then becomes a pure mode of the resulting parallel-plate waveguide.
For θi = θm , mode m is excited. The spacing a between the plates then equals (m + 1) times the
internodal spacing λ/(2θm ). The displayed mode is TE2 (m = 2). Here, the wavefield within the
material of the confining plates is considered to be negligibly small. From [83].

in order to suppress the scattering from the confining plates, the angle of incidence θi of the
beam is chosen to be smaller than the critical angle for total reflection from the lower surface.
Interference between the incident beam and the reflected beam then gives rise to a standing
wave pattern at the gap entrance. If the upper surface is positioned at a node of the standing
wavefield, the wave is captured within the space between the plates, and the parallel-plate
geometry becomes a waveguide for this particular mode (see also figure 12). For example,
the mode shown in figures 11 and 12 at the gap entrance is the transverse electric mode
TE2, having two nodes between the plates. Variations in n(x, z) within the gap cause the
wavefront belonging to one particular mode to scatter into other modes of the waveguide. The
total wavefield, which is a superposition of the discrete modes, therefore differs at the exit
from that at the entrance (see figure 11). How does one deduce n(x, z) from the changes in
the wavefield? Our confined system is a thick phase object [78], so the approximation (17)
leading to the single-scattering (kinematic) diffraction formulae (18) and (19) cannot be made.
Instead one must go back a few steps and solve the Helmholtz equation [2]

∇2� + k2n2(x, z)� = 0, (36)

where ∇2 = ∂2/∂x2 + ∂2/∂z2 and �(x, z) = Ey(x, z), with Ey the transverse electric field.
Solutions of (36) can be readily found for the case where the refractive index of the confined
fluid only depends on x , which for the parallel-plate geometry of figure 11 is a reasonable
assumption. The ansatz

�(x, z) = φ(x) exp(−iβz) (37)

leads to the homogeneous second-order differential equation

d2φ

dx2
+ [k2n(x)2 − β2]φ = 0. (38)

Solutions to this equation should fulfil the boundary conditions, namely that both φ and dφ/dx
are continuous across the fluid–solid interfaces. The parameterβ in (37), called the propagation
factor, is the component of the wavevector along the direction of propagation.

Let us first assume that there is no fluid between the confining surfaces, i.e., n(x) = 1 for
0 � x < a, n(x) = n = 1 − δ for x < 0 and x � a [81]. It is then readily verified that the
solutions of (38) are of the form

φe(x) =




A cos (kxa/2) exp(γ x), x < 0,

A cos [kx(x − a/2)] , 0 � x < a,

A cos (kxa/2) exp[−γ (x − a)], x � a,

(39)
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or

φo(x) =




−A sin (kxa/2) exp(γ x), x < 0,

A sin [kx(x − a/2)] , 0 � x < a,

A sin (kxa/2) exp[−γ (x − a)], x � a,

(40)

where γ = (β2 − n2k2)1/2 and kx = (k2 − β2)1/2, and where φe and φo are respectively even
and odd with respect to the mid-plane of the waveguide. A is a normalization constant for the
wavefunctions. The boundary conditions on φe are fulfilled if

kx tan

(
kxa

2

)
= γ (41)

and those on φo if

kx cot

(
kx a

2

)
= −γ. (42)

The transcendental equations (41) and (42) can be solved numerically for β, and the different
solutions correspond to the waveguide modes. The solutions take a particularly simple form
for γ → ∞, which is the limit of negligible penetration of the evanescent wavefunction
into the confining material. In this case, (41) and (42) yield the conditions kxa = (2l + 1)π
and kxa = 2lπ for the even and odd modes respectively, with l an integer. It is easily
verified that the corresponding wavefunctions within the guiding medium are of the form
φe = A sin[(2l + 1)πx/a] and φo = A sin(2lπx/a). It is convenient [82] to label these modes
instead with the index m = 0, 1, 2, . . . and to rewrite them as

φm(x) =
√

2

a
sin

(
kθm x

a

)
, (43)

where the so-called mode angle θm is defined by

θm ≡ (m + 1)π

ka
= λ(m + 1)

2a
, (44)

and the pre-factor A = √
2/a is chosen such that the {φm} are properly normalized:∫ a

0
|φm(x)|2 dx = 1. (45)

The {φm} form a orthonormal basis set, i.e.

〈m|n〉 ≡
∫ a

0
φ∗

m(x) φn(x) dx = δmn, (46)

where δmn is the Kronecker delta, and the bra–ket notation has been introduced. With this
convention of mode labelling, the even modes TEm correspond to even m and the odd modes
to odd m. The wavefield can be expressed as a linear combination of modes:

|�〉 =
∑

m

〈m|�〉|m〉, (47)

which in the coordinate representation is given by

〈x, z|�〉 =
∑

m

cm exp(−iβm z) φm(x). (48)

The coefficients {ci} are determined by the wavefield at the gap entrance. If the incidence angle
θi equals a mode angle θn, the standing wave at the gap entrance matches that of the waveguide
mode TEn exactly (to within the approximation that the evanescent fields are negligibly small;
see also figure 12). In this case all {ci} except cn are zero, and mode n emerges undisturbed at the
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waveguide exit, after which it is reflected from the lower surface at an exit angle θe = θn = θi.
For a general angle of incidence θi, which may differ from a mode angle, the decomposition
into waveguide modes can now be readily found. The standing wavefield at the entrance is of
the form

〈x, 0|�〉in =
√

2

a
sin(kθix), (49)

and the relative amplitude cm of mode m is given by

cm(θi) = 〈m|�〉in =
∫

x
〈m|x, 0〉〈x, 0|�〉in

= 2

a

∫ a

0
sin(kθm x) sin(kθix) dx = 2(−1)m

ka

θm sin(kθia)

θ2
m − θ2

i

. (50)

Note that cm(θn) = δmn . The wavefield after propagation over a distance L is given by (47)
and (48), with z = L and the relative mode amplitudes given by (50). For diffraction into the
detector at exit angle θe, the standing wavefield at the waveguide exit must have the form

〈x, L|�〉out =
√

2

a
sin(kθex), (51)

in analogy with (49). The intensity I (θi, θe) diffracted into angle θe is then obtained by
projecting the wavefunction |�〉 at the waveguide exit onto the wavefield |�〉out:

I (θi, θe) = |out〈�|�〉|2 =
∣∣∣∣
∫

x
out〈�|x, L〉〈x, L|�〉

∣∣∣∣
2

=
∣∣∣∣∣
2

a

∑
m

cm(θi) exp(−iβm L)
∫ a

0
sin(kθm x) sin(kθex) dx

∣∣∣∣∣
2

=
∣∣∣∣∣
∑

m

exp(−iβm L) cm(θi) cm(θe)

∣∣∣∣∣
2

, (52)

The intensities I (θi, θe) calculated with (52) are in excellent agreement with the measured
values (see figure 13). Contour plots of I (θi, θe) exhibit a sequence of strong maxima along
the diagonal at the positions of the mode angles, in accord with the relation I (θm, θn) = δmn .
The characteristic beating in the intensity maxima and minima along the diagonal arises from
the mode-dependent phase factors exp(−iβm L) in (52), i.e. from multi-mode interference.
One single contour plot represents a collection of diffraction patterns taken at different object
rotation angles θi, in analogy with the tomograms discussed earlier. Hence, data are available in
two dimensions, and it is an interesting—though in this case a somewhat academic—question
whether the object can be reconstructed from the contour plot without any pre-knowledge.

We now consider the presence of a layered fluid (colloid) between the confining
surfaces [77]. The layering is modelled through a periodically varying refractive index of
the form

n(x) = 1 −
N∑

n=0

an cos

(
2πnx

a

)
. (53)

The differential equation (38) with this functional form of the coefficients is known as Hill’s
equation [85], and periodic solutions can be constructed with the use of Floquet’s theorem. If
the layering profile contains a single spatial frequency, we have the special case

n(x) = 1 − a0 − al cos

(
2πlx

a

)
, (54)
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Figure 13. Logarithmic contour plots of the intensity diffracted from the exit of a planar waveguide
with an extended lower plate, as a function of θi and θe. The x-ray wavelength λ = 0.0930 nm and
the waveguide length L = 4.85 mm. (a) The measured intensity distribution for a waveguide with
SiO2 plates at a distance a = 650 nm. (b) The intensity distribution calculated with (52) for the
same plate distance. From [84].

where 1−a0 is the spatially averaged refractive index of the fluid, and the cosine term describes
a modulation in the refractive index associated with l layers. The corresponding solutions
of (38) are the Matthieu functions, which for specific values of β are periodic and fulfil the
relevant boundary conditions. The Matthieu functions are the fundamental waveguide modes
belonging to this specific layering profile, and they form an orthogonal basis set in just the same
way as the sine functions in (43) represent the modes for the waveguide without layered fluid.
Nonetheless, expressing the general solution as a linear combination of empty-waveguide
(i.e. sine) modes provides more insight. Within the latter representation, the layered profile
causes intermodal scattering. For example, it turns out that a profile of l layers will cause
scattering of an empty-waveguide mode m into the modes m − 2l, m + 2l and 2l − m − 2.
In plots such as figure 13, additional intensity maxima are then found along co-diagonals
displaced by ±2l with respect to the main diagonal. In addition, a cross-diagonal intersects
the main diagonal at θi = θpl−1, with p = 1, 2, . . ..

Instead of solving Hill’s equation, one may also find the wavefield by use of the beam
propagation method. This numerical method allows for a refractive index profile that is also
z-dependent, and in general it puts no restrictions on the form of n(x, z). One substitutes

�(x, z) = ψ(x, z) exp(−iβ̃z) (55)

into (36), which removes the rapid variations in the field. The constant β̃ is the reference
propagation constant and denotes a representative value of kn(x, z). One may use β̃ = k since
n(x, z) ≈ 1. Now, if the ∂2ψ/∂z2 term is neglected, one obtains

∂ψ

∂z
= i

2k

{
−∂

2ψ

∂x2
− k2

[
n2(x, z)− 1

]
ψ

}
. (56)

The beam is propagated by numerical integration of (56); given ψ(x, z) one calculates
ψ(x, z +�z). This may be achieved using different numerical schemes [86, 87]. By neglecting
the ∂2ψ/∂z2 term, we make the so-called parabolic approximation [87]. This is justified
whenever the variations in the refractive index are small, i.e. �n/n � 1, and the scattering is
in the near-forward direction, i.e. kx/k � 1. Both conditions are easily met for x-rays.
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Figure 14. Left: contour plots of the diffracted intensity I (θi, θe), (a) measured for a colloid
confined within a gap of 655 nm width, (b) calculated for the refractive index profile n(x) = 1−a(x)
shown. Right: (a) and (b): as in (a) and (b) on the left, but for a gap of 310 nm width. The colloid
is a 10 vol% suspension of 110 nm diameter SiO2 spheres in dimethylformamide. From [77].

Examples of waveguiding within a confined colloid are shown in figure 14 (see also [77]).
The colloid, consisting of a 10 vol% suspension of 110 nm diameter SiO2 spheres in
dimethylformamide, was confined between two SiO2 plates of 4.85 mm diameter, positioned
at separations of 655 and 310 nm. Intense off-diagonal maxima are observed, indicative of
strong intermodal coupling. For a gap of 655 nm (figure 14, left panel (a)), a diffuse cross-
diagonal is visible that intersects the main diagonal at a mode angle ∼θ5. This indicates the
presence of six layers (l ∼ 6). At a gap of 310 nm (figure 14, right panel (a)), only two
layers are present. If the refractive index profile were to be z-independent, the main diagonal
in the contour plot I (θi, θe) would be a symmetry line. The off-diagonal features are clearly
asymmetric, signifying that this assumption for the refractive index profile cannot be made.
Reasonable fits to the measured contour plots are obtained for the displayed n(x) profiles,
provided that they are asymmetrically positioned within the intervals 1.81 < z < 3.85 and
1.90 < z < 3.33 mm for the 655 and 310 nm gaps, respectively. The best-fit profiles show that
the confinement induces a strong layering of the particles in a close-packed structure, whose
order decays with increasing distance from the surfaces. This, as well as the non-uniformity of
the ordered regions within the plane of the gap, strongly suggests that the confinement induces
a crystallization of the colloid at volume densities much lower than the critical density for
crystallization of bulk colloid [88].

The intensity peaks in I (θi, θe) can be viewed as speckles, in the sense that they reflect the
largest length scale within the finite-size object, which is the gap width a. Their angular width
and spacing equal λ/2a. As in the previous applications of coherent scattering, one observes
a particular realization of the system instead of an ensemble average. For the 1D example
discussed here, there occurs some averaging within the (y, z)-plane, but one should not be
surprised that it is difficult to reproduce all of the observed diffraction features with a model.
Finding the correct model by trial and error would require an unrealistically long search in
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multi-parameter space, and here one would benefit from a direct inversion. But then one has
to modify the geometry either into a 2D one or to provide a reference beam for interference,
as in holography. An added complication is that waveguiding, by its very nature, operates in
the limit of thick phase objects.

The spatial resolution in n(x, z) that can be achieved with the waveguiding technique is
determined by the critical angle for total internal reflection θc. The guided mode with the
highest mode number is that at a mode angle just below θc; all higher modes will radiate out
of the waveguide. The spacing between two nodes in the standing wave of the highest guided
mode is ∼λ/2θc and, without any additional knowledge about the system, it is impossible to
resolve features at a distance scale smaller than, say, half this internodal spacing. Hence, the
resolution is of the order s ∼ λ/4θc. We note that [4]

θc = √
2δ = λ

√
re�ne/π, (57)

where use has been made of (12), and�ne represents the difference in electron density across
the interface. Since θc scales with λ, the resolution s is independent of λ. For, e.g., the silica–
water interface, we find s ∼ 15 nm. This resolution is adequate for the structure determination
of e.g. colloids and many other objects, but is insufficient for studies of ordering phenomena on
the molecular scale. For the latter, much larger scattering angles (momentum transfer values)
are required, bringing us well outside of the waveguiding regime and back into the kinematic
diffraction regime.

9. Outlook

As synchrotron radiation sources become more brilliant and more stable, the number of
applications of coherent x-ray scattering will continue to grow. There are interesting
developments not only in the areas of diffractive imaging and waveguiding, but also in
holography, microscopy and intensity correlation spectroscopy. What are the challenges in
these areas?

One of the main challenges in coherent diffractive imaging is to improve the resolution.
Since no optical elements are involved, the spatial resolution of the method is not limited by
a small numerical aperture or by aberrations. Recording coherent diffraction patterns over a
wide range of momentum transfer could in theory yield a resolution as good as 0.1 nm, but in
practice a trade-off has to be made with the counting rate and with possible radiation damage
occurring at high beam doses. To date, a resolution of 7 nm has been achieved (see [61]
and section 7). For biological specimens, the ultimate resolution will be entirely determined
by their resistance to high radiation doses, and it has been estimated that 5 nm would be
realistic [66]. Compared with what can be achieved with cryo-electron microscopy, this is a
modest number. However, x-ray scattering is more element-specific, and the depth of field
is in the micrometre range, i.e. in the range of cell dimensions. By contrast, high-resolution
transmission electron microscopy requires much thinner samples and more involved sample
preparation.

Coherent resonant magnetic scattering in the soft x-ray range shows great promise as a
technique for the diffractive imaging of magnetic domains in thin films. Magnetic speckle
patterns have been reported in [51] and [65]. Inversion of these patterns into real-space
magnetic structures has yet to be carried out. Another challenge will be to perform such
studies in the time domain with picosecond resolution.

Holographic techniques with a reference beam have recently been extended to the hard
x-ray region. Images of micrometre-sized test objects were obtained using Fourier transform
holography, for which the reference source is in the plane of the object [89]. Holography is
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also possible using atoms in a crystal lattice as the source or the detector [90]. This technique,
which provides atomic resolution in extended crystals, falls outside the scope of this paper,
because it does not need a coherent beam, i.e., a beam with a coherence length larger than
a few interatomic distances. Clearly, all these techniques are only at the beginning of their
development, and their application will be extended to nanometre-scale objects or crystals as
more brilliance becomes available.

The waveguides discussed in section 8 can be converted into focusing devices. By simply
tilting the upper surface of the waveguide shown in figure 12, one obtains a wedge [91].
In such a tapered device, the standing wavefield becomes compressed, and it has been
shown theoretically that the lowest mode TE0 at the entrance can be compressed to a height
∼0.7 × λ/(2θc) [92]. Because of (57), the minimum height is only a property of the material
and the geometry. For a planar wedge of SiO2 with an air gap, we predict a line focus of
13 nm height, and for confining materials of higher Z -number, a focus height below 10 nm
is possible. Similar limits should apply to two dimensions, to be achieved either with the use
of a hollow tapered glass capillary [93] or with a circular zone plate having an outer zone of
correspondingly small width. Such spot sizes are not yet available in the hard x-ray regime,
but in the soft x-ray regime one is getting close (∼20 nm; see [94]). The first 2D x-ray
waveguides have recently been reported and a beam of 70 nm × 30 nm cross section has been
extracted [95]. Here, the beam was coupled into a hollow rectangular structure by use of a
resonant beam coupling technique. Future devices may be tapered, and instead of resonant
beam coupling, one may consider pre-focusing of the beam onto the waveguide entrance. The
most important applications for such focusing devices are to be found in scanning microscopy
and imaging.

X-ray intensity correlation spectroscopy (XPCS), which is particularly suited for studies
of the dynamics of soft condensed matter [14], requires an extremely high photon flux,
and the accessible range of momentum transfers is therefore limited by the counting rate.
This technique would be revolutionized if more advanced position-sensitive detectors were
available. Pixel detectors, which are at present being developed for structural biology [96], are
very promising. Each pixel is a Si pn-junction having its own read-out on a chip that contains
for each pixel an amplifier, pulse shaper and counter [97]. These single-photon counting
detectors may enable energy and time stamping of events and cross-correlation of pixels in the
spatial and temporal domains.

With the advent of x-ray free electron lasers (FELs) in six to eight years from now, we will
be confronted with completely different conditions for coherent scattering experiments [98];
the FELs will produce transversely coherent beams at 1010 times higher brilliance than third-
generation synchrotron radiation sources and generate pulses in the femtosecond range. This
opens up completely new avenues of research. However, photon fluxes at FELs will also be
so large that radiation damage will be an important issue. Damage effects will be forbiddingly
high in biomaterials. For this reason it has been proposed that, e.g., diffraction experiments
on single biomolecules be carried out within a single photon pulse. On such a short timescale
(e.g., 20 fs) the diffraction pattern is recorded before the molecule flies apart as a result of
the Coulomb explosion following photon-induced ionization [99]. This issue needs further
investigation.
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